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Abstract. We describe a neural network architecture which enables prediction
and composition of polyphonic music in a manner that preserves translation-
invariance of the dataset. Specifically, we demonstrate training a probabilistic
model of polyphonic music using a set of parallel, tied-weight recurrent networks,
inspired by the structure of convolutional neural networks. This model is designed
to be invariant to transpositions, but otherwise is intentionally given minimal in-
formation about the musical domain, and tasked with discovering patterns present
in the source dataset. We present two versions of the model, denoted TP-LSTM-
NADE and BALSTM, and also give methods for training the network and for
generating novel music. This approach attains high performance at a musical pre-
diction task and successfully creates note sequences which possess measure-level
musical structure.

1 Introduction

There have been many attempts to generate music algorithmically, including Markov
models, generative grammars, genetic algorithms, and neural networks; for a survey
of these approaches, see Nierhaus [17] and Fernández and Vico [5]. Neural network
models are particularly flexible because they can be trained based on the complex pat-
terns in an existing musical dataset, and a wide variety of neural-network-based music
composition models have been proposed [1, 7, 14, 16, 22].

One particularly interesting approach to music composition is training a probabilis-
tic model of polyphonic music. Such an approach attempts to model music as a proba-
bility distribution, where individual sequences are assigned probabilities based on how
likely they are to occur in a musical piece. Importantly, instead of specifying particular
composition rules, we can train such a model based on a large corpus of music, and al-
low it to discover patterns from that dataset, similarly to someone learning to compose
music by studying existing pieces. Once trained, the model can be used to generate new
music based on the training dataset by sampling from the resulting probability distribu-
tion.

Training this type of model is complicated by the fact that polyphonic music has
complex patterns along multiple axes: there are both sequential patterns between timesteps
and harmonic intervals between simultaneous notes. Furthermore, almost all musical
structures exhibit transposition invariance. When music is written in a particular key,
the notes are interpreted not based on their absolute position but instead relative to that



particular key, and chords are also often classified based on their position in the key (e.g.
using Roman numeral notation). Transposition, in which all notes and chords are shifted
into a different key, changes the absolute position of the notes but does not change any
of these musical relationships. As such, it is important for a musical model to be able
to generalize to different transpositions.

Recurrent neural networks (RNN), especially long short-term memory networks
(LSTM) [8], have been shown to be extremely effective at modeling single-dimensional
temporal patterns. It is thus reasonable to consider using them to model polyphonic mu-
sic. One simple approach is to treat all of the notes played at any given timestep as a
single input vector, and train an LSTM network to output a vector of probabilities of
playing each note in the next timestep [4]. This essentially models each note as an inde-
pendent event. While this may be appropriate for simple inputs, real-world polyphonic
music contains complex harmonic relationships that would be better described using a
joint probability distribution. To this end, a more effective approach combines RNNs
and restricted Boltzmann machines to model the joint probability distribution of notes
at each timestep [3].

Although both of the above approaches enable a network to generate music in a
sequential manner, neither are transposition-invariant. In both, each note is represented
as a separate element in a vector, and thus there is no way for the network to general-
ize intervals and chords: any relationship between, say, a G and a B, must be learned
independently from the relationship between a G[ and a B[. To capture the structure
of chords and intervals in a transposition-invariant way, a neural network architecture
would ideally consider relative positions of notes, as opposed to absolute positions.

Convolutional neural networks, another type of network architecture, have proven
to be very adept at feature detection in image recognition; see Krizhevsky et al. [12] for
one example. Importantly, image features are also multidimensional patterns which are
invariant over shifts along multiple axes, the x and y axes of the image. Convolutional
networks enable invariant feature detection by training the weights of a convolution
kernel, and then convolving the image with the kernel.

Combining recurrent neural networks with convolutional structure has shown promise
in other multidimensional tasks. For instance, Kalchbrenner et al. [10] describe an ar-
chitecture involving LSTMs with simultaneous recurrent connections along multiple
dimensions, some of which may have tied weights. Additionally, Kaiser and Sutskever
[9] present a multi-layer architecture using a series of “convolutional gated recurrent
units”. Both of these architectures have had success in tasks such as digit-by-digit mul-
tiplication and language modeling.

In the current work, we describe two variants of a recurrent network architecture in-
spired by convolution that attain transposition-invariance and produce joint probability
distributions over a musical sequence. These variations are referred to as Tied Paral-
lel LSTM-NADE (TP-LSTM-NADE) and Biaxial LSTM (BALSTM). We demonstrate
that these models enable efficient encoding of both temporal and pitch patterns by using
them to predict and generate musical compositions.



1.1 LSTM

Long Short-Term Memory (LSTM) is a sophisticated architecture that has been shown
to be able to learn long-term temporal sequences [8]. LSTM is designed to obtain con-
stant error flow over long time periods by using Constant Error Carousels (CECs),
which have fixed-weight recurrent connections to prevent exploding or vanishing gra-
dients. These CECs are connected to a set of nonlinear units that allow them to interface
with the rest of the network: an input gate determines how to change the memory cells,
an output gate determines how strongly the memory cells are expressed, and a forget
gate allows the memory cells to forget irrelevant values. The formulas for the activation
of a single LSTM block with inputs xt and hidden recurrent activations ht at timestep
t are given below:

zt = tanh(Wxzxt +Whzht−1 + bz) block input
it = σ(Wxixt +Whiht−1 + bi) input gate
ft = σ(Wxfxt +Whfht−1 + bf ) forget gate
ct = it � zt + ft � ct−1 cell state
ot = σ(Wxoxt +Whoht−1 + bo) output gate
ht = ot � tanh(ct) output

where W denotes a weight matrix, b denotes a bias vector, � denotes elementwise vec-
tor multiplication, and σ and tanh represent the logistic sigmoid and hyperbolic tangent
elementwise activation functions, respectively. We are omitting so-called “peephole”
connections, which use the contents of the memory cells as inputs to the gates. These
connections have been shown not to have a significant impact on the network perfor-
mance [6]. Like traditional RNN, LSTM networks can be trained by backpropagation
through time (BPTT), or by truncated BPTT. Figure 1 gives a schematic of an LSTM
block.
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Fig. 1. Schematic of a LSTM block. Dashed lines represent a one-timestep delay. Solid arrow
inputs represent xt, and dashed arrow inputs represent ht−1, each of which are scaled by learned
weights (not shown). ⊕ indicates a sum, and � indicates elementwise multiplication.



1.2 RNN-NADE

The RNN-RBM architecture, as well as the closely related RNN-NADE architecture,
are attempts to model the joint distribution of a multidimensional sequence [3]. Specif-
ically, the RNN-RBM combines recurrent neural networks (RNNs), which can capture
temporal interactions, and restricted Boltzmann machines (RBMs), which model con-
ditional distributions.

RBMs have the disadvantage of having a gradient that is untractable to compute:
the gradients of the loss with respect to the model parameters must be estimated by
using a method such as contrastive divergence or Gibbs sampling. To obtain a tractable
gradient, the RNN-NADE architecture replaces the RBM with a neural autoregressive
distribution estimator (NADE) [13], which calculates the joint probability of a vector
of binary variables v = [v1, v2, · · · , vn] (here used to represent the set of notes that are
being played simultaneously) using a series of conditional distributions:

p(v) =

|v|∏
i=1

p(vi|v<i)

with each conditional distribution given by

hi = σ(bh +W:,<iv<i)

p(vi = 1|v<i) = σ(bvi + Vi,:hi)

p(vi = 0|v<i) = 1− p(vi = 1|v<i)

where bv and bh are bias vectors and W and V are weight matrices. Note that v<i
denotes the vector composed of the first i− 1 elements of v, W:,<i denotes the matrix
composed of all rows and the first i− 1 columns of W , and Vi,: denotes the ith row of
V . Under this distribution, the loss has a tractable gradient, so no gradient estimation is
necessary.

In the RNN-NADE, the bias parameters bv and bh at each timestep are calculated
using the hidden activations ĥ of an RNN, which takes as input the output v of the
network at each timestep:

ĥ(t) = σ(Wvĥv
(t) +Wĥĥĥ

(t−1) + bĥ)

b(t)
v = bv +Wĥbv

ĥ(t)

b
(t)
h = bh +Wĥbh

ĥ(t)

The RNN parametersWvĥ,Wĥĥ, bv ,Wĥbv
, bh,Wĥbh

, as well as the NADE parameters
W and V are all trained using stochastic gradient descent.

2 Translation Invariance and Tied Parallel Networks

One disadvantage of distribution estimators such as RBM and NADE is that they can-
not easily capture relative relationships between inputs. Although they can readily learn



relationships between any set of particular notes, they are not structured to allow gen-
eralization to a transposition of those notes into a different key. This is problematic for
the task of music prediction and generation because the consonance or dissonance of a
set of notes remains the same regardless of their absolute position.

As one example of this, if we represent notes as a one-dimensional binary vector,
where a 1 represents a note being played, a 0 represents a note not being played, and
each adjacent number represents a semitone (half-step) increase, a major chord can be
represented as

. . . 001000100100 . . .

This pattern is still a major chord no matter where it appears in the input sequence, so

1000100100000,

0010001001000,

0000010001001,

all represent major chords, a property known as translation invariance. However, if the
input is simply presented to a distribution estimator such as NADE, each transposed
representation would have to be learned separately.

Convolutional neural networks address the invariance problem for images by con-
volving or cross-correlating the input with a set of learned kernels. Each kernel learns to
recognize a particular local type of feature. The cross-correlation of two one-dimensional
sequences u and v is given by

(u ? v)n =

∞∑
m=−∞

umvm+n.

Crucially, if one of the inputs (say u) is shifted by some offset δ, the output (u ? v)n
is also shifted by δ, but otherwise does not change. This makes the operation ideal for
detecting local features for which the relevant relationships are relative, not absolute.

For our music generation task, we can obtain transposition invariance by designing
our model to behave like a cross-correlation: if we have a vector of notes v(t) at timestep
t and a candidate vector of notes v̂(t+1) for the next timestep, and we construct shifted
vectors w(t) and ŵ(t+1) such that w(t)

i = v
(t)
i+δ and ŵ

(t+1)
i = v̂

(t+1)
i+δ , then we want the

output of our model to satisfy

p(ŵ(t+1)|w(t)) = p(v̂(t+1)|v(t)).

2.1 Tied Parallel LSTM-NADE

In order to achieve the above form of transposition invariance, but also handle complex
temporal sequences and jointly-distributed output, we propose dividing the music pre-
diction task into a set of tied parallel networks. Each network instance will be respon-
sible for a single note, and will have tied weights with every other network instance. In
this way, we ensure translation invariance: since each instance uses the same procedure
to calculate its output, if we shift the inputs up by some amount δ, the output will also



Fig. 2. Illustration of the windowing and binning operations. The thick-outlined box represents
the current note. On the left, a local window around the note is extracted, and on the right, notes
from each octave are binned together according to their pitchclass. For clarity, an octave is repre-
sented here by four notes; in the actual implementation octaves are of size 12.

be shifted by δ. Our task is thus to divide the RNN-NADE architecture into multiple
networks in this fashion, while still maintaining the ability to model notes conditionally
on past output.

In the original RNN-NADE architecture, the RNN received the entire note vector
as input. However, since each note now has a network instance that operates relative
to that note, it is no longer feasible to give the entire note vector v(t) as input to each
network instance. Instead, we will feed the instance two input vectors, a local window
w(n,t) and a set of bins z(n,t). The local window contains a slice of the note vector v(t)

such that w(n,t)
i = v

(t)
n−13+i where 1 ≤ i ≤ 25 (giving the window a span of one octave

above and below the note). If the window extends past the bounds of v, those values are
instead set to 0, as no notes are played above or below the bounds of v. The content of
each bin zi is the number of notes that are played at the offset i from the current note
across all octaves:

z
(n,t)
i =

∞∑
m=−∞

v
(t)
i+n+12m

where, again, v is assumed to be 0 above and below its bounds. This is equivalent to col-
lecting all notes in each pitchclass, measured relative to the current note. For instance,
if the current note has pitchclass D, then bin z2 will contain the number of played notes
with pitchclass E across all octaves. The windowing and binning operations are illus-
trated in Figure 2.

Finally, although music is mostly translation-invariant for small shifts, there is a
difference between high and low notes in practice, so we also give as input to each



network instance the MIDI pitch number it is associated with. These inputs are con-
catenated and then fed to a set of LSTM layers, which are implemented as described
above. Note that we use LSTM blocks instead of regular RNNs to encourage learning
long-term dependencies.

As in the RNN-NADE model, the output of this parallel network instance should be
an expression for p(vn|v<n). We can adapt the equations of NADE to enable them to
work with the parallel network as follows:

hn = σ(b
(n,t)
h +Wxn)

p(t)(vn = 1|v<n) = σ(b(n,t)v + V hn)

p(t)(vn = 0|v<n) = 1− p(t)(vn = 1|v<n)

where xn is formed by taking a 2-octave window of the most recently chosen notes,
concatenated with a set of bins. This is performed in the same manner as for the input
to the LSTM layers, but instead of spanning the entirety of the notes from the previous
timestep, it only uses the notes in v<n. The parameters b(n,t)

h and b(n,t)v are computed
from the final hidden activations y(n,t) of the LSTM layers as

b(n,t)v = bv +Wybvy
(n,t)

b
(n,t)
h = bh +Wybhy

(n,t)

One key difference is that bv is now a scalar, not a vector, since each instance of the
network only produces a single output probability, not a vector of them. The full output
vector is formed by concatenating the scalar outputs for each network instance. The left
side of Figure 3 is a diagram of a single instance of this parallel network architecture.
This version of the architecture will henceforth be referred to as Tied-Parallel LSTM-
NADE (TP-LSTM-NADE).

2.2 Bi-axial LSTMs

A downside to the architecture described in Section 2.1 is that, in order to apply the
modified NADE, we must use windowed and binned summaries of note output. This
captures some of the most important relationships between notes, but also prevents the
network from learning any precise dependencies that extend past the size of the window.
As an alternative, we can replace the NADE portion of the network with LSTMs that
have recurrent connections along the note axis. This combination of LSTMs along two
different axes (first along the time axis, and then along the note axis) will be referred to
as a “bi-axial” configuration, to differentiate it from bidirectional configurations, which
run recurrent networks both forward and backward along the same axis.

In each “note-step”, these note-axis LSTM layers receive as input a concatenation
of two sources: the activations of the final time-axis LSTM layer for this note, and
also the final output of the network for the previous note. The final activations of the
note-axis LSTM will be transformed into a probability p(n,t)(vn = 1|v<n) using soft-
max activation. Note that, just as each note has a corresponding tied-weight time-axis
LSTM network responsible for modeling temporal relationships for that single note,



Fig. 3. On the left, schematic of a network instance for the tied parallel LSTM-NADE network.
This instance is responsible for producing the output probability for the note indicated with the
thick-outlined box. On the right, a schematic of an instance in the bi-axial LSTM network, show-
ing a single instance of the time-axis network and three note-steps of the note-axis network. For
each network, we concatenate a window of the note’s vicinity, bins, and MIDI note number of
the current note. Concatenations are indicated by lines connected by a solid black circle. Dashed
arrows represent time-delayed connections, blue arrows represent recurrent connections, thick
double-line-arrows represent the modified NADE estimation, and double-headed arrows indicate
sampling a binary value from its corresponding probability.

each timestep has a corresponding tied-weight note-axis LSTM network responsible
for modeling the joint distribution of notes in that single timestep. Sequentially running
the network for each note in a timestep allows us to determine the full conditional dis-
tribution for that timestep. This modification to the architecture is shown on the right
side of Figure 3, and will be referred to as Bi-Axial LSTM (BALSTM).

2.3 Training and Generation

We demonstrate our architecture by applying it to a polyphonic music prediction task,
as described in Boulanger-Lewandowski et al. [3]. We train our network to model the
conditional probability distribution of the notes played in a given timestep, conditioned
on the notes played in previous timesteps. Specifically, we interpret the output of the
nth tied-weight network instance at timestep t as the probability for playing note n at t,
conditioned on previous note choices. Training our model thus amounts to maximizing
the log-likelihood of each training sequence under this conditional distribution.

To calculate the log-likelihood of a given sequence, since we already know the notes
that are chosen at all timesteps, we can use those notes as the inputs into the model, and
then sum the log-likelihoods of the sequence being generated across all notes and all
timesteps. Letting q(n,t) represent our network’s estimate of p(t)(vn = 1|v<n), our cost
is given by

C = − 1

TN

T∑
t=1

N∑
n=1

ln
[
v(t)n q(n,t) + (1− v(t)n )(1− q(n,t))

]
,

where T is the number of timesteps and N is the number of possible notes.



Importantly, in each of the variants of our architecture described above, interaction
between layers flows in a single direction; i.e. the LSTM time-axis layers depend only
on the chosen notes, not on the specific output of the note-axis layers. During training,
we already know all of the notes at all timesteps, so we can accelerate our training pro-
cess by processing each layer independently: first preprocessing the input, then running
it through the LSTM time-axis layers in parallel across all notes, and finally either using
the modified NADE or the LSTM note-axis layers to compute probabilities in parallel
across all timesteps. This massively parallel training process is ideal for training on a
GPU or on a multi-core system.

Once trained, we can sample from this trained distribution to “compose” novel se-
quences. In this case, we do not know the entire sequence in advance. Instead, we must
run the full network one timestep at a time. At each timestep, we process the input for
that timestep, advance the LSTM time-axis layers by one timestep, and then generate
the next timestep’s notes. To do this, we sample from the conditional distribution as
it is being generated: for each note, we choose v(t)n from a Bernoulli distribution with
probability q(n,t). Then, this choice is used to construct the input for the computation
of q(n+1,t). Once all of the notes have been processed, we can advance to the next
timestep.

The bottleneck of sampling from the distribution before processing the next timestep
makes generation slower on GPUs or multi-core systems, since we can no longer paral-
lelize the activation of note-axis computation. However, this can be mitigated somewhat
by generating multiple samples simultaneously.

3 Experiments

3.1 Quantitative Analysis

We evaluated two variants of the tied-weight parallel model, along with a non-parallel
model for comparison:

– LSTM-NADE: Non-parallel model consisting of an LSTM block connected to NADE
as in the RNN-NADE architecture. We used two LSTM layers with 300 nodes each,
and 150 hidden units in the NADE layer.

– TP-LSTM-NADE: Tied-parallel LSTM-NADE model described in Section 2.1. We
used two LSTM layers with 200 nodes each, and 100 hidden units in the modified
NADE layer.

– BALSTM: Bi-axial LSTM with windowed+binned input, described in Section 2.2.
We used two LSTM layers in the time-axis direction with 200 nodes each, and two
LSTM layers in the note-axis direction with 100 nodes each.
We tested the ability of each model to predict/generate note sequences based on four

datasets: JSB Chorales, a corpus of 382 four-part chorales by J.S. Bach; MuseData1, an
electronic classical music library, from CCARH at Stanford; Nottingham2, a collection
of 1200 folk tunes in ABC notation, consisting of a simple melody on top of chords;
and Piano-Midi.de, a classical piano MIDI database. Each dataset was transposed into C

1 www.musedata.org
2 ifdo.ca/%7Eseymour/nottingham/nottingham.html

www.musedata.org
ifdo.ca/%7Eseymour/nottingham/nottingham.html


Table 1. Log-likelihood performance for the non-transposed prediction task. Data above the line
is taken from Boulanger-Lewandowski et al. [3] and Vohra et al. [25]. Below the line, the two
values represent the best and median performance across 5 trials.

Model JSB Chorales MuseData Nottingham Piano-Midi.de

Random -61.00 -61.00 -61.00 -61.00
RBM -7.43 -9.56 -5.25 -10.17
NADE -7.19 -10.06 -5.48 -10.28
RNN-RBM -7.27 -9.31 -4.72 -9.89
RNN (HF) -8.58 -7.19 -3.89 -7.66
RNN-RBM (HF) -6.27 -6.01 -2.39 -7.09
RNN-DBN -5.68 -6.28 -2.54 -7.15
RNN-NADE (HF) -5.56 -5.60 -2.31 -7.05
DBN-LSTM -3.47 -3.91 -1.32 -4.63

LSTM-NADE -6.00, -6.10 -5.02, -5.03 -2.02, -2.06 -7.36, -7.39
TP-LSTM-NADE -5.88, -5.92 -4.32, -4.34 -1.61, -1.64 -5.44, -5.49
BALSTM -5.05, -5.86 -3.90, -4.41 -1.55, -1.62 -4.90, -5.00

Table 2. Log-likelihood performance for the transposed prediction task. The two values represent
the best and median performance across 5 trials.

Model JSB Chorales MuseData Nottingham Piano-Midi.de

LSTM-NADE -9.04, -9.16 -5.72, -5.76 -3.65, -3.70 -8.11, -8.13
TP-LSTM-NADE -5.89, -5.92 -4.32, -4.33 -1.61, -1.64 -5.44, -5.49
BALSTM -5.08, -5.87 -3.91, -4.45 -1.56, -1.71 -4.92, -5.01

major or C minor and segmented into training, validation, and test sets as in Boulanger-
Lewandowski et al. [3]. Input was provided to our network in a piano-roll format, with
a vector of length 88 representing the note range from A0 to C8.

Dropout of 0.5 was applied to each LSTM layer, as in Moon et al. [15], and trained
using RMSprop [21] with a learning rate of 0.001 and Nesterov momentum [19] of 0.9.
We then evaluated our models using three criteria. Quantitatively, we evaluated the log-
likelihood of the test set, which characterizes the accuracy of the model’s predictions.
Qualitatively, we generated sample sequences as described in section 2.3. Finally, to
study the translation-invariance of the models, we evaluated the log-likelihood of a ver-
sion of the test set transposed into D major or D minor. Since such a transposition should
not affect the musicality of the pieces in the dataset, we would expect a good model of
polyphonic music to predict the original and transposed pieces with similar levels of
accuracy. However, a model that was dependent on its input being in a particular key
would not be able to generalize well to transpositions of the input.

Table 1 shows the performance on the non-transposed task. Data below the line
corresponds to the architectures described here, where the two values represent the
best and median performance of each architecture, respectively, across 5 trials. Data
above the line is taken from Vohra et al. [25] (for RNN-DBN and DBN-LSTM) and
Boulanger-Lewandowski et al. [3] (for all other models). In particular, “Random” shows



the performance of choosing to play each note with 50% probability, and the other
architectures are variations of the original RNN-RBM architecture, which we do not
describe thoroughly here.

Our tied-parallel architectures (BALSTM and TP-LSTM-NADE) perform notice-
ably better on the test set prediction task than did the original RNN-NADE model and
many architectures closely related to it. Of the variations we tested, the BALSTM net-
work appeared to perform the best. The TP-LSTM-NADE network, however, appears to
be more stable, and converges reliably to a relatively consistent cost. Both tied-parallel
network architectures perform comparably to or better than the non-parallel LSTM-
NADE architecture.

The DBN-LSTM model, introduced by Vohra et al. [25], has superior performance
when compared to our tied-parallel architectures. This is likely due to the deep belief
network used in the DBN-LSTM, which allows the DBN-LSTM to capture a richer joint
distribution at each timestep. A direct comparison between the DBN-LSTM model and
the BALSTM or TP-LSTM-NADE models may be somewhat uninformative, since the
models differ both in the presence or absence of parallel tied-weight structure as well as
in the complexity of the joint distribution model at each timestep. However, the success
of both models relative to the original RNN-RBM and RNN-NADE models suggests
that a model that combined parallel structure with a rich joint distribution might attain
even better results.

Note that when comparing the results from the LSTM-NADE architecture and the
TP-LSTM-NADE/BALSTM architectures, the greatest improvements are on the Muse-
Data and Piano-Midi.de datasets. This is likely due to the fact that those datasets contain
many more complex musical structures in different keys, which are an ideal case for a
translation-invariant architecture. On the other hand, the performance on the datasets
with less variation in key is somewhat less impressive.

In addition, as shown in Table 2, the TP-LSTM-NADE/BALSTM architectures
demonstrate the desired translation invariance: both parallel models perform compa-
rably on the original and transposed datasets, whereas the non-parallel LSTM-NADE
architecture performs worse at modeling the transposed dataset. This indicates that the
parallel models are able to learn musical patterns that generalize to music in multiple
keys, and are not sensitive to transpositions of the input, whereas the non-parallel model
can only learn patterns with respect to a fixed key. Although we were unable to eval-
uate other existing architectures on the transposed dataset, it is reasonable to suspect
that they would also show reduced performance on the transposed dataset for reasons
described in section 2.

3.2 Qualitative Analysis

In addition to the above experiments, we trained the BALSTM model on a larger col-
lection of MIDI pieces with the goal of producing novel musical compositions. To this
end, we made a few modifications to the BALSTM model.

Firstly, we used a larger subset of the Piano-Midi.de dataset for training, including
additional pieces not used with prior models and pieces originally used as part of the
validation set. To allow the network to learn rhythmic patterns, we restricted the dataset
to pieces with the 4/4 time signature. We did not transpose the pieces into a common



key, as the model is naturally translation invariant and does not benefit from this mod-
ification. Using the larger dataset maximizes the variety of pieces used during training
and was intended to allow the network to learn as much about the musical structures as
possible.

Secondly, the input to the network was augmented with a “temporal position” vec-
tor, giving the position of the timestep relative to a 4/4 measure in binary format. This
gives the network the ability to learn specific temporal patterns relative to a measure.

Thirdly, we added a dimension to the note vector v to distinguish rearticulating a
note from sustaining it. Instead of having a single 1 represent a note being played and a
0 represent that note not being played, we appended an additional 1 or 0 depending on
whether that note is being articulated at that timestep. Thus the first timestep for playing
a note is represented as 11, whereas sustaining a previous note is represented as 10,
and resting is represented as 00. This adjustment enables the network to play the same
note multiple times in succession. On the input side, the second bit is preprocessed in
parallel with the first bit, and is passed into the time-axis LSTM layers as an additional
input. On the output side, the note-axis LSTM layers output two probabilities instead
of just one: both the probability of playing a note, and the probability of rearticulating
the note if the network chooses to play it. When computing the log-likelihood of the
sequence, we penalize the network for articulating a played note incorrectly, but ignore
the articulation output for notes that should not be played. Similarly, when generating a
piece, we only allow the network to articulate notes that have been chosen to be played.

Qualitatively, the samples generated by this version of the model appear to possess
complexity and intricacy. Samples from the extended BALSTM model demonstrate
rhythmic consistency, chords, melody, and counterpoint not found in the samples from
the RNN-RBM and RNN-NADE models (as provided by Boulanger-Lewandowski et
al. [3]). The samples also seem to possess consistency across multiple measures, and
although they frequently change styles, they exhibit smooth transitions from one style
to another.

A portion of a generated music sample is shown in Figure 4. Samples of the gener-
ated music for each architecture can be found on the author’s website. 3

4 Future Work

One application of the music prediction task is improving automatic transcription by
giving an estimate for the likelihood of various configurations of notes [18]. As the
music to be transcribed may be in any key, applying a tied parallel architecture to this
task might improve the results.

A noticeable drawback of our model is that long-term phrase structure is absent
from the output. This is likely because the model is trained to predict and compose
music one timestep at a time. As a consequence, the model is encouraged to pay more
attention to recent notes, which are often the best predictors of the next timestep, in-
stead of on planning long-term structures. Modeling this structure will likely require
incorporating a long-term planning component into the architecture. One approach to

3 https://www.cs.hmc.edu/%7Eddjohnson/tied-parallel/

https://www.cs.hmc.edu/%7Eddjohnson/tied-parallel/


combining long-term planning with recurrent networks is the Strategic Attentive Writer
(STRAW) model, described by Vezhnevets et al. [24], which extends a recurrent net-
work with an action plan, which it can modify incrementally over time. Combining such
an approach with a RNN-based music model might allow the model to generate pieces
with long-term structure.

We also noticed that the network occasionally appears to become “confused” after
playing a discordant note. This is likely because the dataset represents only a small por-
tion of the overall note-sequence state space, so it is difficult to recover from mistakes
due to the lack of relevant training data. Bengio et al. [2] proposed a scheduled sampling
method to alleviate this problem, and a similar modification could be made here.

Another potential avenue for further research is modeling a latent musical style
space using variational inference [11], which would allow the network to model distinct
styles without alternating between them, and might allow the network to generate music
that follows a predetermined musical form.

5 Conclusions

In this paper, we discussed the property of translation invariance of music, and proposed
a set of modifications to the RNN-NADE architecture to allow it to capture relative
dependencies of notes. The modified architectures, which we call Tied-Parallel LSTM-
NADE and Bi-Axial LSTM, divide the music generation and prediction task such that
each network instance is responsible for a single note and receives input relative to that
note, a structure inspired by convolutional networks.

Experimental results demonstrate that this modification yields a higher accuracy on
a prediction task when compared to similar non-parallel models, and approaches state
of the art performance. As desired, our models also possess translation invariance, as
demonstrated by performance on a transposed prediction task. Qualitatively, the output
of our model has measure-level structure, and in some cases successfully reproduces
complex rhythms, melodies, and counterpoint.

Although the network successfully models measure-level structure, it unfortunately
does not appear to produce consistent phrases or maintain style over a long period
of time. Future work will explore modifications to the architecture that could enable
a neural network model to incorporate specific styles and long-term planning into its
output.
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Fig. 4. A section of a generated sample from the BALSTM model after being trained on the
Piano-Midi.de dataset, converted into musical notation.
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